Wnt/β-catenin and Hedgehog pathways are involved in the inflammatory effect of Interleukin 18 on rat chondrocytes
نویسندگان
چکیده
To investigate the inflammatory effect of Interleukin 18 (IL-18) on rat chondrocytes and the involvement of Wnt/β-catenin and Hedgehog pathways, the mRNA and protein level of matix-degrading enzymes (MMP-2, 3, 9,13 and aggrecanses) and chondrocyte-specific proteins (Collagen II and aggrecan) were evaluated by qRT-PCR and Western blot, and key protein level of Wnt/β-catenin and Hedgehog pathways including β-catenin, GSK-3β, DKK-1, IHH, SHH, and Gli-2 were evaluated by Western blot. Dickkopf-1 (DKK-1) and Cyclopamine were used as antagonist of Wnt/β-catenin and Hedgehog pathways to perform pathway inhibition tests. In addition, location and expression of β-catenin, GSK-3β, Gli-2 and Smo were assessed by Immunofluorescence microscopy. The results showed up-regulation of matix-degrading enzymes (MMP-2, 3, 9,13 and aggrecanses) and down-regulation of chondrocyte-specific proteins (Collagen II and aggrecan) at both mRNA and protein level and activation of Wnt/β-catenin and Hedgehog pathways in the inflammatory reaction on rat chondrocytes caused by IL-18 treatment was observed. As conclusion, Wnt/β-catenin and Hedgehog pathways are involved in the inflammatory effect of IL-18 in vitro.
منابع مشابه
Specnvezhenide Decreases Interleukin-1β-Induced Inflammation on Rat Chondrocytes via NF-κB and wnt/β-Catenin Pathways and Reduces Joint Destruction in Osteoarthritic Rats
As a chronic disease, osteoarthritis (OA) leads to degradation of both cartilage and subchondral bone, of which the development is related to proinflammatory cytokines like interleukin-1β. In the present study, the anti-inflammatory effect of Specnvezhenide in osteoarthritis and mechanism of it was studied in vitro and in vivo. The results showed that Specnvezhenide decreases interleukin-1β-ind...
متن کاملThe Role of Wnt/β-catenin Signaling Pathway in Rat Primordial Germ Cells Reprogramming and Induction into Pluripotent State
Primordial Germ Cells (PGCs) are unipotent precursors of the gametes. PGCs can give rise to a type of pluripotent stem cells in vitro that are called embryonic germ (EG) cells. PGCs can also acquire such pluripotency in vivo and generate teratomas. Under specific culture conditions, PGCs can be reprogrammed to embryonic germ cells which are capable of expression of key pluripotency marker...
متن کاملInteraction of viral oncogenic proteins with the Wnt signaling pathway
It is estimated that up to 20% of all types of human cancers worldwide are attributed to viruses. The genome of oncogenic viruses carries genes that have protein products that act as oncoproteins in cell proliferation and transformation. The modulation of cell cycle control mechanisms, cellular regulatory and signaling pathways by oncogenic viruses, plays an important role in viral carcinogenes...
متن کاملInvestigating the role of signaling pathways and cancer stem cells in esophageal cancer with a therapeutic approach
Esophageal cancer (EC) is the sixth main cause of cancer death worldwide. Important genes associated with esophageal cancer include FOXO3, AKT, and GSK3β. Excessive FOXO3 expression inhibits the proliferation of cancer cells. The expression of AKT is involved in controlling cell growth in tumors. GSK3β activity is higher in cancer tissues. Given the effective role of cancer stem cells (CSCs) in...
متن کاملThe Canonical Wnt Signaling (Wnt/β-Catenin Pathway): A Potential Target for Cancer Prevention and Therapy
Precise regulation of signal transduction pathways is crucial for normal animal development and for maintaining cellular and tissue homeostasis in adults. The Wnt/Frizzled-mediated signaling includes canonical and non-canonical signal transduction pathways. Upregulation or downregulation of the canonical Wnt-signaling (or the Wnt/β-Catenin signal transduction) leads to a variety of human diseas...
متن کامل